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ABSTRACT

We consider the pure initial value problem for the system of equations

vt = vxx + f(v) - w

wt = (v - Yw), ,y ), 0 ,

the initial data being (v(x,0),w(x,0)) = ('(x),O). Here f(v) = -v + H(v - a)

1
where H is the Heaviside step function and a e (o,-). This system is of

the FitzHugh-Nagumo type, and has several applications including nerve

conduction and distributed chemical/biochemical systems. It is demonstrated

that this system exhibits a threshold phenomenon. This is done by considering

the curve s(t) defined by s(t) = sup{x:v(x,t) - a). The initial datum,

(x), is said to be superthreshold if lim s(t) = m It is proven that the

initial datum is superthreshold if o(x) > a on a sufficiently long

interval, p(x) is sufficiently smooth, and t(x) decays sufficiently fast

to zero as 1xi .
I" T., I --
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SIGNIFICANCE AND EXPLANATION

In this paper we consider a system of differential equations which have

several applications including nerve conduction and distributed

chemical/biochemical systems. Our primary interest is the threshold

properties of these equations. This corresponds, for example, to the

biological fact that a minimum stimulus is needed to triqger a nerve

impulse. One expects that if the initial stimulus is greater than some

*threshold amount then a signal will be transmitted down the axon. In this

case we say that the initial stimulus is superthreshold. We demonstrate that

the equations under study do indeed exhibit threshold properties, and we find

sufficient conditions for the initial data to be superthreshold.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THRESHOLD PHENOMENA FOR A REACTION-DIFFUSION SYSTEM

David Terman

Section 1. Introduction.

In this paper we consider the pure initial value problem for the system of

equations:

(1.1) Vt - vxx + f(v) - w

wt - C(v - Yw), C, > 0

the initial data being (v(x,O),w(x,0)) = (W(x),0). We assume that

f(v) - -v + H(v - a) where H is the Heaviside step function, and a e (o, ).

These equations arise as a model for the conduction of electrical impulses in a nerve

axon. The most famous such model is due to Hodgkin and Huxley 113], however a

mathematical analysis of their model has proven very difficult. The complexity of the

Hodgkin and Huxley model led FitzHugh [8) and Nagumo, Arimoto and Yoshizawa [153 to

introduce the simpler system (1.1) with f(v) replaced by f1 (v) - v(1 - v)(v - a).

The model we consider was introduced as a further simplification by McKean [143.

" Surveys of the physiological background of these equations may be found in Cohen [5],

Hastings [113, and Rinzel 18].

Here v - v(x,t) represents the electrical potential along the axon as a

function of time t and position x, while w = w(x,t) represents a recovery

variable needed in order that system (1.1) exhibit pulse shaped solutions. Thinking

of (x) as the initial stimulus, one expects v(x,t) to behave in a manner

qualitatively similar to what is observed in the laboratory. For example, electrical

* impulses in the nerve axon appear to move with constant shape and velocity.

Mathematically this corresponds to solutions of the form (v(x,t),w(x,t))

(Vc(z),wc(z)), z - x + ct. Such a solution is often called a traveling wave

Sponsored by the United 9tates Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science roundation under
Grant NO. MCS80-17158.
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solution. The existence of traveling wave solutions for the Fitz~ugh-Wagumo system,

with fl(v). wee given by Carpenter [3), Conley [4], and Nastings [121 if the

parameter t is suf ficiestly small. Rinsel end Zeller [19] considered the McKean

model with Y - 0. They obtained all of the traveling wave solutioas together vith

their speeds of ps egtie.. liuilar results for the Mcean model with Y > 0 have

been obtained by Rinuel and Thrm [20).

Our primary laterest is to study the threshold properties of thee equations.

That Is, if the initial dates.. %vx) * is sufficiently small, then the solution to

(1.*1) will decay emenentially fast to owre as t + m. Thia corresponds to the

biological fact that a minimm stimulus is needeod to trigger a nerve Impulse. In

this cage we ay thaot #(x) is suhthrosbeld. One espects, however, that if the

initial stimulus is sufficiently lUrge, or sperthrewhold, then a signal will he

transmitted down the ames. We ise this to he the case if the parameter a in

chosen sufficiently small.

Throughout this paper we ams~ that the Initial datum # Cx) satisfies

Lk Ca) OW a C IC()

(c) ~OWx - Of-x) in a

(1.2) (d) There mwists a unique constant XO> 0 much that (O) -a

(e) OCX) > a for lxi (9

r2

(f) I'OCx1 < as2 for 1x1 > x

(9). o* is a bounded matinee" fuation except poeeibly when lxj xO.

*1 This last condition is needed In order to obtain muff icient a pri~ri bound@ on the

derivatives of the solution of system (1.1).

Note that in go"e se6nse determies the sise of the initial datum.

Therefore, we expect a signal to propagate if no is sufficiently large. in order

to be more precise we consider the curve oft) given by o~t) -suptx:v~x,t) -a).

-2-



We define O(x) to be superthreshold if eit) is defined for all t e S + 
and

lim s(t) =

Note that because f(v) is discontinuous we cannot expect the solution (vw)

to be very smooth. By a classical solution of system (1.1) we mean the following.

Definition: Let ST - R x (0,T) and GT - {(xt) e ST:v(xlt) * a). Then

(v(x,t),w(x,t)) is said to be a classical solution of the Cauchy problem (1.1)

in ST if

(a) (v,w) along with (vxWx) are bounded continuous functions in ST,

(b) in GT, Vxx, vt and wt are continuous functions which satisfy

the system of equations

w t (v - Yw)

(C) lim vlx,t) - o(x) and lim w(x,t) - 0 for each x e R
t+0 t+0

Throughout this paper we assume that there exists a unique classical solution of

the Cauchy problem (1.1) in R x *
+ . 

In particular, we assume that there exist

constants V and V such that lv(x,t)J < V and Iw(x,t)I < W in R x o Using

the method of invariant rectangles (see Weinberger (25]) Rauch and Smoller (17]

considered system (1.1) with fl(v) and showed that such bounds exist if

f (v)
(1.3) lim 1 >

lvl" v

A similar argument shows that such bounds exist for system (1.1) with f(v) if

f(v) satisfies (1.3). The results of this paper are still valid if we assume that

f(v? - -v + H(v - a) for jvi 4 1, f(v) is a smooth function with f'Cv) < 0 for
f(v) l I

lvi > 1, and lim -f--. > - . In [23] it is shown that a classical solution of

1vl- v
the Cauchy problem (1.1) does exist in ST for some T > 0.

It will also be necessary to assume that the curve s(t) does not behave too

wildly. These assumptions are described in the second paragraph of Section 3.

With these assumptions we prove the following resulti

-3-



Theorem 1.1: Choose a@ (0 and y 0. T %hore exist Positie 6Mt@

and 0 much that if t 6 (,1) ad AXm) oatfibb (1.2) 'Pith * 0.

o(x) is superthreohold.

in this paper we only find selffiiet maditions for the initial data to be

superthreshold. Subthroskold reults for the Vitasbgh-Uagumo model veto given by

Rach and Miler (171. UsiLag a linearisation teEhnique they s d that the rest

. state (vw) - (0,G) to stable in en appropriate Kilbert Ws@. For eome valm of

the parameters 9 and T they was aIso able to pove the sta"L2ity of the ree

state by maontrcting a Zyqonev funeties. Further .ubt hresbol4 reult. we give n

by Schonbek [21].

Ybe primary toduklqves used throemsst, this pae~r are satn VA-orems for

parabolio partial diffecat lal equations. Tbeme results are diesomosed Ia fotion 2.

In Section 2 we also state seem reults about solutios of ew scalar egmtioa

(1.4) Vt -vxx f(v)

These results are proven in [22], and will play a vry portast role Is tho proof oe

Theorem 1.1. Xquetiona mlilar to (1.4) have ma applicetions and he been stauied

by a number of people (see [2] for riereaces) . A. A. fisher [71 latrodsed equation

S(1.4) with f(v) - v(1 - v) in enkeotion with ortain problem in population

genetics. Other applications occur in theories of coubustion and a4ative tuamissaion

lines. Threshold results for this scalar equation were given by Manson and

meinberger (2] who mee the following assumptions an f(v)g

f S C1 [0,1]. f(O) - fW1) , 6, f'(4) < 0

(1.5) f(v) 9 0 in (0,&), f(v) ) 0 in (&,1) for some a 6 (0.1), and

f f(v)dv > 0

-4-



"d In their paper, Aronson and Weinberger referred to this as the "heterozygote

inferior" case in connection with the Fisher model for population genetics. They

showed that if the initial datum, O(x), is sufficiently small, then

lis v(x,t) - 0, while if (x) is sufficiently large on a sufficiently large

interval, then lim v(x,t) - I for x e R. Here we briefly discuss the proof of the

superthreshold part of their results because it clearly illustrates how comparison

7functions are constructed and why one expects equation (1.4), or system (1.1), to

exhibit a threshold phenomenon.

Aronson and Weinberger construct comparison functions q (x) which are

solutions of the steady state equation

(1.6) q; + f(qn) 0

The phase plane configuration of this equation is shown in Figure 1.1.

P

X.I

q

Figure 1.1
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Because of the assumptions on f there exists a unique constant X e (0,) such

that f f(u)du - 0. If n e (X,o) then the trajectory through (r,0) is
0 1 p2

characterized by i p + F(q) - Fn). It is easy to show that this trajectory

intersects both the positive and negative p axis. Thus, given n e (Xw), there

exists a bT e R and a function qT (x) such that q,(x) is a solution of the

steady state equation (1.6) which satisfies

q L q (x) - q (0) in (-b,b °

In fact, one can show that b. 2 f {2FOT) - 2f(y)} 2 dy where F(y) = f u)du.

0 0
Aronson and Weinberger then prove the following result.

Theorem: Let v(x,t) e [0,1] be a solution of (1.4) in R x R+ where f(v)

satisfies (1.5). If o(x) > qn(X - x0 ) in (x0 - b., x0 + bN ) for some rt e (X,I)

and for some x0 e R, then

l.m u(x,t) - 1
t+40

In this construction we see that a sufficient condition for the initial datum to be

superthreshold is that it lie above one of the comparison functions qC1(x),

n e (x,1). We expect equation (1.4) to exhibit a threshold phenomenon because

comparison functions of arbitrarily small length or height cannot be constructed.

Further results for the scalar equation (1.4) were given by Fife and McLeod

!61. Assuming that f(v) satisfies (1.5) with f'(1) < 0, they showed that if

P(x) is superthreshold then the solution will converge uniformly to a traveling wave

solution.

The proof of Theorem 1.1 is given in Section 3.

-- 6
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Section 2. Preliminary Results

The principal tools used in the proof of Theorem (1.1) are presented in this

section. We begin by stating, without proof, some standard comparison theorems for

linear parabolic equations. Proofs of the comparison theorems may be found in

Protter and Weinberger [16]. We then prove a comparison theorem for solutions of a

nonlinear system of equations. Finally, we discuss those results which are needed

about the scalar equation:

(2.1) vt . Vxx + f(v)

Throughout this paper we will constantly be comparing solutions of the system (1.1)

to solutions of the scalar equation (2.1).

Comparison Theorems

For T > 0 let a (t) and a 2(t) be continuous functions on [0,T]. We

assume that 1 (t) is either finite or identically -m and a 2(t) is either finite

or identically +- on [0,T]. Let

0 - (Cx,tl=al(t) < x < a2(t), 0 C t ( T)

and let L be the linear operator defined by

Lu u Ut - uxx + u

Assume that in D, u(x,t) is a bounded continuous function with ux, U

and ut continuous.

Theorem 2.1: Assume that u(x,t) satisfies the inequalities

(2.2) (a) Lu > 0 in D

(b) u(x,0) ) 0 in [a1(0),1 2 (0)]

If a (t) or 2(t) are finite assume that

(c) u(a 1(t),t) > 0 in [0,T] ,

(d) u(V2(t),t) ) 0 in [0,T] .

Then u(x,t) ' 0 in D. If u(x,0) > 0 for some x e (a I(0),a 2(0)), then

u(x,t) > 0 in D.

-7-



Theorem 2.2: Assume that a (t) is finite for either k I 1 or 2. Furthermore,

assume that a k(t) e c ([0,T]), and u(x,t) satisfies the inequalities (2.2a-d)

with u(x,0) > 0 for some x e (a1(0),a2(0)). If u(-k(t),t) - 0 for some

t e (0,T], then (-1) ku x(ak(t),t) < 0.

Theorem 2.3: Assume that u(x,t) satisfies the inequalities (2.2a,b) with

u(x,O) > 0 on ta (0),a 2(0)]. If, for k = 1 or 2, aM(t) is finite, assume that

za k(t) e C((O,T)) and (-1)k ux(ak(t),t) 0 on (0,T). Then u(xt) > 0 in D.

The Scalar Equation

The following result is proven in [22, Corollary 6.4].

I
Theorem 2.4: Choose a e (0q) and K < -a. Assume that d < 1 -K and

r, > 0. Furthermore, assume that I(x) satisfies (1.2), and u(x,t) is the

solution of the equation

ut Uxx + f(u) -K in R x R+

u(x,0) = *(x) in R

Then there exist constants 8, r, and T, which depend only on a, K, and d such

that if x0 > 8, then v(x,t) > d for lxi < r I , t > T. Furthermore, the curve

s(t), given by s(t) = sup(x:v(x,t) - a), is a well defined, continuously

differentiable function which satisfies

(a) s' (t) is a locally Lipschitz continuous function

(b) lim s (t)
t- .

(c) s(t) > x. - r for t e

A Comparison Theorem for Systems of Equations

Suppose that for T > 0 the functions v0 (x,t) and v1 (x,t) satisfy vk(xt)

e c2 (3+ x (0,T)), k = 1,2, and v1 (x,t) < v0 (x,t) in e x (0,T). Furthermore,

suppose that a 0x) and a (x) are smooth functions which satisfy a 0(x) < a (x

-8-



in R+ . Let wk(x,t), k - 0,1, be solutions of the ordinary differential equations

Wkt ' '(vk - Ywk) in R X (0,T)

wk(X,O) - ak (x) in R+

Note that w0 (x,t) < w1 (x,t) in k+ x (0,T). Let L1  be the operator defined by

L1u = ut - Uxx - g(u) where g is a bounded, smooth function. Finally, let

(v,w) be the solution of the system of equations

(2.3) +
wt = C(v - Yw) in R X (0,T)

with initial and boundary conditions

(2.3a) (v(x,0),w(x,0)) - ((x),*(x)) in R

v(0,t) - h(t) in (0,T)

We assume that the functions P(x), V(x), and h(t) are all continuously

differentiable.

Proposition 2.51 Assume that v1 (x,0) 1 O(x) ( v0 (x,0), v 1 (0,t) 4 h(t) v0(0,t) ,

and I(x) 4 O(x) a 0 (x) In R . Furthermore, assume that

* Lv -w
(2.4) 1 0 1

++

"L~v 1  ( w in R+  x (0,T) .

Then, v1 (x,t) ( v(x,t) 4 v0 (x,t), and wl(x,t) 4 w(x,t) • w0 (xt) in Rx (0,T).

Proof: Using an iteration scheme, we approximate the solution of (2.3) by a sequence

of functions (vn(xt),wn(x,t)). We show that for each n ) 2,

v1 (x,t) vn(x,t) 4 v0 (x,t) and wl(xt) 4 wn(xt) 4 w0(xt) in R+ x (0,T). We

then show that the sequence of functions (vn,wn) converges uniformly on bounded

sets to the solution (vw).

The functions vn(xt) and wn(x,t) are defined as follows. Suppose that

for n ) 2, v 0 ,v1,.°,Vn I and wOwEl,...,Wn I have been defined. We then let

vn(x,t) be the solution of the equations:

-9-



f Livn - -wn- 1  in R+ (01T)

=(2.5) vn(x'O) - O(x) in 3'

v,(O~t) - h(t) in (0,T)

we then let w,(x~t) be the solution of the equations:

(2.6) wnt - C~n- ""ni n x(O)

wn(x1O) - 41(x) in 3+

we show, using induction, that for n ), 2,

and,

(2.7b) (-I)n wn (x~t) < (-1) nwn(x,t) C (_1)nw,*2 Cxlt) in 3~X (0,T)

First, suppose that n - 2. We wish to show that vj(x,t) < v2 (xlt) 4 vo(x,t) in

R3 x (0,T).* This is proven by a comparison argument. Note that, by our

assumptions, vi(x,O) 4 v2Cx,O) < vCx,O) and v1 (O,t) < v2 (O,t) < v0 (O,t).

Furthermore, LIv1 < L~v2 (LIV 0 in R+ x (0,T). This is because L1v2 - -w, and

we are assuming that -w1  Liv0  and -Wi -wo )O L~vj in x+) (0,T). From

Theorem 2.1 of (21 it follows that v1 '(v v0  in 2 + x (0,T).* It immediately

follows from (2.6) that wl < w2 < w0 in 3+ x (0,T) .

Now suppose that, for n ), 2, (2.7a) and (2.7b) hold. If n is even, we

* conclude from (2.7b) that

w n-(xt < Cxt wn-2 (xlt) in 3~x (0,T)

From (2.5) It follows thatl

C1vn1 L1 (vn,) < L,(,v,) in R~ +x (0,T).

Since vnil(xgO) - vn+l(xiO) -Vn(xiO) - o(x) and vni,(Ovt) , Vn+i(O't) -vn (0,t)

=h(t) it follows from Theorem 2.1 of (2] that

(2.8a) vn..1(x't) < Vn+,(xt)) 4 v,(x,t) in *+ X (0,T)

If n is odd, then from (2.7b) and (2.5) it follows that

LINv) CL 1 (vn+1 ) CL 1 (vn_1 ) in *+ x (0,T).

Since vn (x,0) - vn+i(x,0) =vn..i(xO) o v(x) and Vot) -vn+i(O~t) =n10t

-h(t) we conclude that

-10-



(2.8b) vn(x,t) 4 Vn+l(X,t) 4 Vn-l(X,t) in + x (0,T)•

Combining (2.8a) and (2.8b) it follows that

(-1)n+lvn(x,t) 4 (-1)n+lvn+l(X't) 4 (-1)n+lvn.l(xt) in k+ x (0,T)

and using (2.6),

(-ll~n+lw n (x,t) wn+(Xt) < (-ln+lw, X,t) in 3 x (0T)

This completes the induction argument that (2.7) holds.

We have now shown that

Vi 4 v 3  (V2n+1 . v2n v2 v0

and

Wl < w3 
4  

ow 2n+ol w2n o w2 (w 0

in X (0,T). Hence, there exist pairs of functions (i;,) and (v~w) such

that (V2nw2n) converges to (,;) ad (v2n+1,w2n+1) converges to (v,w)

uniformly on bounded sets of 3
+ x (0,T) as n * . Clearly, v, < v0 ,

vI  v v0  wI  < w0  and w w w 0 in x (0,T). To complete the proof of

the Proposition we show that (v,w) S (v,;) S (v,) in e+ x (0,T).

Let G(x,t,tT) be the Green's function for the domain k+ x kt+. That is,

2

G(x,t,t,T) K(x - t,t - r) - K(x + &,t - T) where K(x,t) - 1 4t. Then,

for n 1,

t
v2 n(xt) - f G(x,C,t,T)lV()dC + f h('r)G (x,Ot,T)dT
2, 0 0

(2.9) + f G(X,t,t,T)[g(V2n(E,T)) - w 2n.1(t,T)1d~dT
0 0

w2n(X,t) = e'eytV(x) + ce- cy ft eeyin 2n(x,)dn
0

Passing to the limit in (2.9) it follows that

-11-
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. t
v(x,t) - f G(x,C,t,T)l(Fld4 + f h(r)G (x,O,t,T)dT

0 0

+ft f
+ f f G(x, ,t,r)(g(v( ,r)) - (,)dx,

00

-- Cyt -Cye cyn
w(x,t) = e- *(x) + Ce ft e v(x,n)d n

0

Hence (is), (x)* ( xxxx), and (;twt) are all continuous functions and

(4.;) solves the system of equations:

IL

(2.10a) - - -+

w.t -(v Yw) in R x (0,T) #

(;(x,O),;(x,O)) - (i(x),p(x)) in le

;;(O,t) - h(t) in (0,T)

Similarly, ( solves the equations:

(2.10b){ L~wi
C( - Y, in R,+ x (0,T)

(;(x,O),,(x,o)) = (4(x),*(x)) in R
+ 

,

v(O,t) = h(t) in (0,T)

Let z(x,t) - Z(x,t) - v(x,t) and u(x,t) - ;(x,t) - v(x,t). 'Subtracting'

(2.10b) from (2.10a) we conclude that (zy) is a solution of the equations:

{zt Zxx + g(0) - g( ) + y ,

Yt . C[z - Yy) in x (0,T)

(z(x,O),y(x,O)) - (0.0) in 
+

z(O,t) - 0 in (0,T)

From the mean value theorem and our assumptions on g, there exists a bounded

function B(x,t) such that g(v) - g(u) - B(x,t)(; - u). Hence, (z,y) solves the

linear system of equations:

-12-
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(2.11) { t .;: :x:+:O:Dt)z + y

yt =E~z Yy)in R +x (0,T)

(z(x,0),y(x,0)) - (0,0) in U

z(O,t) - 0 in (0,T)

We wish to show that (z,y) M(0,0) in le x (0,T). This would imply that

Note that (z,y) can be written Implicitly as a solution of the integral

* equations:

t
(2.11a) z(x,t) - f f G(x,E,t,T)fOC&,r)Z(&,T) + y(E,T)]d~dT

0 0

(2.11b) Y(x,t) - £ee 1Cy fet . z(x,l)d
0

Let

-' P(t) - sup {Iz(x,t)I + Iy(x,t)I}
+

XeR

and suppose that IS(x,t)I < B in le x (0OT). Taking B > I it follows from

(2.11a) that

t

(2.12a) IZ(X,t)I 4 B f P(T)dT
0

From (2.11b) we conclude that

t
(2.12b) Iy(x,t)I C C f P(T)dT

0

* Adding (2.12a) and (2.12b) we obtain

-13-



"4

t

P(t) ( (B + f) f p(T)dT in (OT)

0

From Gronwall's inequality we now obtain 
that p(t) - 0 in (0,T). Hence

(zry) 2( 0,0) and E in e x (0,T). It now follows from (2.10a)

that (;.;} is a solution of the system (2.3). However# an argument similar to the

one just given shows that the solution 
to system (2.3) is unique, and, therefore,

• 4 (v,w) (,1in a x (0,T).

-14-
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Section 3. Proof of Theorem 1.1

Throughout this section we assume that the initial datum, V(x), satisfies the

assumptions (1.2), and there exists a unique classical solution of the Cauchy problem

(1.1) in R x R. Because of the assumption (1.2), the pure initial value problem

(1.1) is equivalent to the initial-boundary value problem:

(vt = v + f(v) - w(3oi)xx
wt  E(v Y-w) in R x R

(v(x,O),w(x,O)) - ((x),O) in 3+

vx(o,t) - 0 in 3+

Throughout the rest of this paper we only consider solutions of this quarter plane

problem.

Recall that o(x) is said to be superthreshold if lia s(t) = where

s(t) = sup{x:v(x,t) - a). In the introduction we mentioned that it would be

necessary to make some assumptions on the function s(t). We now describe these

assumptions.

Assumptions in (t).

If s(t) is continuous in the interval (t0,t), then A - lim s(t)
t+tl

exists. Furthermore, there exist positive constants M and 6 such that for

t i - 6 < t < t, either

(a) s(t) < -M(t - t1 ) + ,

(3.2)

or (b s(t) > M(t - t1 ) + A

Note that these conditions are satisfied if s(t) does not approach

tangentially from both directions as t + t,. In particular, they are satisfied if

s(t) does not change directions infinitely often in every neighborhood of t = tI .

-- -15-
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The principal tools used in the proof of Theorem 1.1 are the comparison

theorems. We construct two, one-parameter families of comparison functions G K(x)

and H x0() defined for x0 > 0 and x • 0, which serve, respectively, as a lower

bound for v and an upper bound for w. The proof of Theorem 1.1 is then split into

two parts. We first prove the following.

Theorem 3.1s Fix a e (0,) and Y > 0. There exist positive constants 6, 6, T1 ,

T 2 1 and A with the following properties. Assume that £ e (0,8) and 4(x)

satisfies the assumptions (1.2) with x0 > 0. Furthermore, assume that

(a) O(x) > G (x) in [0,x
10 Ox 0)

(3.3a) (b) IJ'() 4 1G1 (x)I inNO"

(c) Iw(x,0)l 4 H10(x) in (0,0)

Then there exists T e (T1,T2 ) such that s(T) - x0 + 1, B(t) > x 0 -0 1 in

(0,T], and
(a) vlxT) > Gx +llX) in (0,x0 + 1)

0#

(3.3b) (b) Iv(X,T)I I G x0 +1(X) in Ex0 + 1,
M ) 

,

(c) Iw(x,T)l C H x+l(x) in (0,")

d0

Note that if (v(x,0),w(x,0)) satisfies (3.3a) then we can keep repeating this

result to conclude that s(t) is continuously moving to the right by one unit.

Hence, some sort of signal is being propagated.

To complete the proof of Theorem 1.1 we prove the following:

Theorem 3.2: Assume that (v,w) is a solution of the initial-boundary value problem

(3.1). The constants 8 and 8 obtained in Theorem 3.1 can be chosen so that

if Ox) satisfies (1.2) with x0 > 6, and e (0,6), then there exists a

constant To such that for A - s(T 0 ),

(a) v(x,T0 ) > G1 (x) in [0,A)

(3.4) (b) Jv(x,T0 ) IC IG X W in (A,-),

(c) Iw(x,T 0 ) l 4 H,(x) in [0,-)

-16-
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This result completes the proof of Theorem 1.1 because once (3.4) is satisfied

we can apply Theorem 3.1 to conclude that P(x) is superthreshold.

Note that we wish to obtain a lower bound for v and an upper bound for w. To

obtain these bounds we use repeated applications of the following estimates.

Since w(x,t) satisfies the ordinary differential equation wt - C(v - yw), it

can be written explicitly in terms of v as:

t
-Cyt-Cyt

w(x,t) - e WYt(x,O) + Ce t f e CYv(x,n)dn
0

Assuming that w(x,0) Hx 0 (x) in + it follows that

t
(3.5) Iw(x,t)l 4 (x) + C f Iv(x, n)Idn in R+ x

0 0

and, therefore,

-. (3.6) Iw(x,t)l < HxX) + CVt in 2 
+ X

0

" 'Using these estimates we are able to control the size of w by choosing C small.

Once we have an upper bound on w, we use the comparison theorems described in

Section 2 to obtain lower bounds on v.

In the estimate (3.6), w(x,t) increases linearly in time. We shall see that

!f this provides a sufficient bound for x < s(t). However, we shall need that the

functions v and w decay exponentially fast to zero as x + 
". This shall be

proven using Proposition 2.5, and taking advantage of the fact that for x > s(t),

(v,w) is a solution of the linear system of equations:

vt = Vxx - V - W

wt . C(V - Yw)

In what follows the reader should constantly refer to Figure 3.1 which shows

that the comparison functions G. (x) and HI,(x) involve many constants and

-17-



.4

G IX)xo0
d

92 (x-x 2 ) a1 g(x-x 2 )

.4x 3x2 x1

g3 (x'X3 ) 321

H Wx
x 0

x 3  x0

Figure 3.1. The Comparison Functions G x)W and H x)W.



' i~

functions. We present the various properties of these constants and functions

whenever they are needed in the proof of Theorem 1.1. To emphasize that the

comparison functions are well defined and depend only on the parameters a and Y

we also present, without motivation, their definitions in Appendix A.

We mentioned that the proof of Theorem 1.1 is split into two parts. We first

prove Theorem 3.1. Until otherwise stated we assume that (3.3a) is satisfied. The

proof of Theorem 3.1 consists of a number of steps. In (A) we define (x) and
Gx0

Hl (x) for x > xO , and show that Iv(x,T)l > Gxo+,(x) and Iw(x,T)I < Hxo+1 (x)xO

for x > x0 + 1. In (B) we define Hx (x) for x L [0,x 0 ), and show that

w(x,T) < H x0 1 (x) for x e [0,x 0 + 1). In (C) we define the comparison function

SGx0(x) for x e (0,x0 ), and show that v(x,T) > Gx0 +1 (x) for x e (O,x0 + 1). In

(D) and (E) we prove there exist onstants A1, T
I, and T2 which depend only on

the parameters a and f such that:

(a) s(T) is a well defined, continuous function satisfying

s(T) X0 + 1, for some T e (T1 ,T2 )

(3.7) (b) s(t) > x0 - 1  for t e (0,T). Furthermore, v > a for

x0- < x < s(t), 0 < t < T

(c) s(t) < x0 + I for t < T

In (A), CB), and (C) we assume that (3.7) is valid. This is justified because

the proof of (3.7), given in (D) and (E), does not depend on the results proven in

(A), (B) or (C). The reason that the proof of Theorem 3.1 is presented in this order
is to better motivate why the comparison functions G (x) and NO (x) are defined

G X0  2"(o

as they are. For a more rigorous presentation of the proof of Theorem 3.1, it is

suqqested that the reader begin with Appendix A where the comparison functions are

formally defined. He should then read (D) and CE), and conclude with (A), (B), and

(C). The proof of Theorem 3.2 is given in (M).

-19-
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(A) G (X) and H X0x) for x > x0

2 (x0x r "2 0x

For x > x0 , let G (x) - -s2 0- and ,x (2-N where

(3.8) m - min(- a,a)

Recall that we are assuming that (3.7) holds. In particular, s(T) - x 0 + I for

some T > 0, and s(t) < x0 + I for t < T. Here we show that the constant 6 can

be chosen so that if e 6 (0,6), then, for x ) x0 + 1,

Iv(x,T) l 4 IG x0+(X)0

and

-w(x,T) l 4 ,0+1(x)

This is done by applying Proposition 2.5.

-r (x 0 +1-x) - (x +1-x)
Let v0 (x,t) - ae and v1 (x.t) - -ae in

[x0 + 1,0) x f0,T] • Note that v(x0 + 1,t) < a - v0 (x0 + 1,t) for t e (0,T)

This is because s(t) - sup{x:v(x,t) - a) while T = inf(t:s(t) - x0 + i}•

Furthermore, v(x0 + 1,t) > -a - v1 (x0 + 1,t) for t e (0,T). This follows from the

following comparison argument which shows that v(x,t) > -a for x > s(t),

t e (0,T). Note that v(s(t),t) - a > -a for t > 0, and v(x,0) > G x) > -a
XO

for x > x0 . In order to apply Theorem 2.1 to conclude that v > -a for x > s(t),

t e (0,T) we must show that Lv > L(-a). Note that Lv = -w, while L(-a) - -a.

From (3.6) it follows that for x > s(t), t e (0,T),

Iw(x,t)Il 1 1 + vIw < m

m mif C < 2o So one condition we must impose on 6 is that 6 2. Since m < a

the result follows.

-20-



Let wk(xt), k - 0,1, be the solutions of the equations:

Wk t - C(v k - Yw) in (x0 + I,") x R

f ( + -x)
wk(xe,O) = 0 in (x0 + 1,4)

Note that vl(x,O) 4 v(x,O) C vo(x,O) and wj(x,0) < w(x,O) 4 wo(X,O) in

(xo + 1, ). In order to apply Proposition 2.5 to conclude that

(+ f2x x +1 -x)

IvCxo,t)l 4 ae and IwCx,t)I (m- a 2 0 in () o + 1,") X (OT), we

must show that

. ~Lv0 > -w

and

LV1 < -W0  in NO + 1,m ) 
X OT)

Recall that L is the operator defined by Lv B v t - Vxx - v. Note that

r.2 (Xox ) -2 (xo +l-x)

LVO = 2  1 and Lv, (x- 2- On the other hand, it follows

from (3.5) that, in (x0 + 1,w) x (0,T), T

Iwo(x,t)l < H (X) + C f Iv (x,n)ldn

f e2 (xo-X) T f-2 N(Xo~)
e• ae n

0
(x -X CxI-x)

m 2 ( 0-x +cf 2  0

m" (XoX) / 2 (+1-x)

2 2 + CaTse2

= 2
Therefore, if C is chosen so that

then

-2 (xo+-x)

(3.10) Iw 0(xt) e 2 0 +j(x)

-21-
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Since m < a we conclude that

LV1 4 -w0  in (x0 + 1,-) x (0,T)

A similar computation shows that if (3.9) is satisfied, then Lv0  -w I  in

(x0 + I,") x (0,T). We can therefore apply Proposition 2.5 to conclude that

Iv(x,T)I 4 v0 (x,T) - Gx0 1 (Ix)

and

Iw(x,T)I lC w0(x,T) for x ) x. + 1

From (3.10) it follows that Iw(x.T)l < Hx +1(X) for x > xo + 1.
0

(B) H, for x e tOx o )

For xe (o,xO ) set Hi (x) - (x-x) +M. The constantsA
0e 2(A1 + A2 + 13) 0 2 1 2'

and A3 will be defined later, in C, when we discuss Gx) for x e (O,x0 ). For now

we just assume that they are well defined positive constants which do not depend on

the parameter C. Here we show that if C is sufficiently small, then w(x,T) f Hx0+l(X)

for x e (o,x 0 + i). In fact, we prove a stronger result which is needed later.

Consider the line J(t) - x0 + t/T. We show that if C is sufficiently small,

then w(x,t) ( H1(t)(x) for (x,t) e (0,x0 + i) x (0,T). Since L(T) - x0 + 1 this

implies the desired result.

First suppose that x e (0,x0 ). Assume that

m
(3.11) £ < 2(A + A + A3)VT

1 2 3

Then, from (3.6), it follows that

Iw(xt)l 4 xo (X) + CVt

S (x - x) A m m A t.i (2(A 1 + A+ A3 ) 0 +2(A 1 + A2 + A3 1 T

1 FX+m2 + 1 2 3
- m

2[A + 2 + A3] (x0 + t/T - x) +
2A1 +X2 2

H (t)()

-22-
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m 2 0 -X)
For x e (x0 ,x0 + 1), Hx0 (x) = e Assume that

/22

(3.12) < -. mini m X + 2
2 0(x(1 1 

+ 
A 2 

+  
(1- xA +22

Then, from (3.6),

Iw(x,t)I H x0 (X) + Cvt

0 m t U

2O ~ ~ ( +X +A~
21k1 + X2 + A3 0  T 2

- = Htlt) Ix) .

(C) G Ux) for x e E[Ox O )

We now define the comparison function G 0(x) for x e (0,x0 ), and show that

if C is sufficiently small, then v(x,T) > Gx0 (x) for x e (o,x0 + 1). Let

a for x I x -x x 4 x

0 gl(X - x21 for x2 S x 1 - A2 < x 4 xI

(2(x - x2 ) for x3 - x2 - A3 < x 4 x2

_3 (xx 3 ) for 0 ( x ( x3 •

- The constant X is determined later in (D). It shall be chosen so that (3.7) is1
satisfied. The constants X2, A3  and functions g1(x), g2(x), g3 (xx 3 ) are defined

as follows.

I I

3, g 2(x): Recall from (3.8) that n - min(- -a,a). Set

(3.14) , = loq[2 (1 - (a + m))]
m

For x e [- 3,01, define 92(x) to bp the solution of the differential equation

-23-
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- 2 m - 1 ,

g (o) ( 0, g2 (-X 3 ) a a

Note that

(3.15) g2 (x) a + m -+ x + e- x
) 1 - , for x e [- ,01

3 3 33 + e

Using this formula and (3.14), one easily verifies that

(a) gj(x) > 0 for x e i-A ,0)
i3

(3.16) (b) I - 2m < 92(0) < 1 - m

(c) 32 > 2

Let

(3.17) d 92(0)

X 2 , gI(x): Recall, from (3.7), that we are assuming that there exist constants

T, and T2 such that s(T) -x + I for some T e (T,,T 2 ). Let

2 1+T1

2 -(d +a) TI

and

(3.18) A2  A2 + X3

Note that A2 > 2 
> 

1. Let

. d for 0 4 x X 3

N(3.19) q1 (x)

d- (=d j(x - 23 , for A < X

'2

The important properties of g1(x) are:

(a) gl(O) - d

(b) g(0) - 0

(3.20) (c) gI (A2) a

(d) g (x) ( 0 for x e (0,X2 )

(e) gq + 9! ;' 
> 

m + d - 1 for x e ( 3 ,X2 )

-24-



Property (e) follows because for x e 2

"; + , g; -2(1 -- '][+ (x 3 2[ d  a][T1 + (x -3
ZT T 3

I A2  1 1

-2( - =I -m + d - .
2

g 3 (x,x 3): For x e [O,x 3], define g3 (xx 3 ) to be the solution of the

differential equation,

9S - 93 " - (x - x3 ) + m ,

g9(O,x 3 ) - 0, q3 (x3 ,x3 ) - a

Note that

+m--e M -X m
(3.21) g3 (x,x3 ) I- [e + eX] + 2 e x + j 

(x -x 3 ) -m.

e 3+ e x 3

The following properties follow from this formula.

(a)d1
dx 93(xfx3)I xx3 <2

(3.22)
A4 -A4

(b) Choose X so that e 4 - e > and > 0. For t 0 let
4

(t) = X + t. Then, a 9 3 (x,(t)) < 0 for x e [0,t (t)],
4 at3

t e R+ . 
This is because,

a&(axe)( t ) + e-I(t) e(t) -Z,(t) + ex a3(,t)=.[- + e ) + -~ • - 1)]r 8m

(e (t) + e-i(t))2

()+ e-L ( t) ) + m(eA4  - 4 - x  -X am
< -t (t )  + e £- (t) 2  e : e - 2

< 0.

-25-
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We now show that if C is sufficiently small, then v(x,T) > G x+I(x) for

x 6 (0 ,x0 + 1). We actually prove a little nore. for t e fOT], let
t

1(t) - x0 + - and Y(t) - inf{&(t),s(t)}. We show using the comparison theorems
0 T

that G Am)(x) < v(xt) for (x,t) e G- {(x,t)3x 6 roy(t)), t e (0,T)}. Since

Y(T) - s(T) this certainly implies the desired result.

The proof in by contradiction. Suppose there exists some point p - (,) e G

such that G )(x) - v(,). From (3.7b) it follows that p can be chosen so that

G (x) < v(x,t) for (x,t) e G, t < E.
"'Ct)

In order to use a comparison argument to obtain a contradiction it is necessary

to show that Lv > LGL(t)(x) in G. To estimate Lv we use the results of (B)

where it was shown that w(x,t) (H (t)(x) for x e (o,f(t)), t e (0,T). Therefore,

m t
w(x,t) < HL(t)(x) - 2(A + 2 + 3 (x 3 + - x) + m

2A1 +X2 +A3 3

< - (x (x + )) + m for0 xt

(3.23) 4 Is for x3 + (x • t)

Here we used that A + 2 + A3 > 1. This is justified because A 2 > 
1 (see the

remarks following (3.18)).

We first show that it is Impossible for e S (Ox 3 + T). If this were the case,

then, since G (t)(x) < a for x e (0,x3 there exists a constant such

that v(x,t) ( a and G (t)(x) < a in the rectangle R = ( - B,x + B) X (t - 6,t).

Howver, G()(x) < v(x,t) on the left, right, and bottom sides of R. We show

that LGL(t)(x) < Lv in R so that we can apply Theorem 2.1 to obtain the desired

contradiction. Note that, in R, Gt(t)(x) + g 3 (x - t3 + ),x3 + ), and therefore,

L(x t' t t t L ( ( ).i(t)(x) It g3
(
x - (3 ax2 9 - (x3  3

+q 3 x - (x3 + ),x 3 + t)

-26-



From (3.22b) it follows that

2  
t t t tLGl(x) < - - 3(x - (x3  ,x + + g3(x (x + t),x + 11(~t) ax 2  

3  3 3 TT

M (x - (x + M)) -
T 3 T

On the other hand, in R, v < a and, therefore, Lv = -w. From (3.23) it follows

that LG 1(t)(x) < Lv in R.

A similar argument shows that it is impossible for i e (x3 + ;,x2 + !) or
_
x e (x2 + 1,x I + t). If this were the case, then, as before, there exists a constant

B such that Gltl(x) > a and v(x,t) > a in the rectangle R defined by

-1 R" 
( 

- + B) x + t - B, ). Then GL(t)(x) < v(xt) on the left, right, and

bottom sides of R. We show that LG1(t)(x) < Lv in R so that we can apply

Theorem 2.1 to obtain the desired contradiction.

First suppose that x e (x3 + !,x 2 +T)° Then G Llt)(x) g2 (x - (X3 +

From (3.16a) it follows that

LGt 1(x) (x - (x3 + t t(x - (x + 1)) + g(x (x +

t t

-g3(x - (x3 + -)) + g2x (x3 +

,?. = 1 - m.

On the other hand, from (3.23), w(x,t) < m in R. Therefore, Lv - 1 - w > 1 - m

> LG 1(t) (x) in R.

If ; e (x2 , + ), then G,(t)(x) - g1 (x - (x2 + !)) in R. From (3.20)

it follows that

-27-



T "x11 g~lx - (x2 +')1 + gl(x - (x 2 +')1

* tltl(x 2 - -, g;(x - (x 2  1 - (x2
"T e (X2% +7)) g;"(x (- 2 + 4)) (" 2 + )

1 - (a + d) + d

However, from 3.23, w(x,t) < m in R. Therefore, Lv I 1 - w > 1 - m > IG(t)(x)

in R.

Similarly # 0. In this case we can argue as before dhosing a rectangle of

the form R = (0.B) x ( -,).

It remains to show that it is impossible for xk + for 1, 2, or

3. From Theorem 2.2 it follows that this is impossible if

a t; 3
x G

0 (i)l(xk + -1) I GV;( l((Xk + ) ) for k - 1,2,3

Here g'(*-) denotes the left sided derivative of g at x, while g'(x + ) denotes

the right sided derivative.

If = 3 + , then, from (3.16Ec) and (3.22a),
T r- ) a - -, ; )

Tx I(;)( 7 =  x 93 ( x x  2

while,

- t

,. If x =x 2 + j:. then,

x (x )+t, 921(0) 0

Finally, if x x 1 , then, from (3.20A),

a G (

-28-
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while G ( )(x) - a for x e (x, + ,x +) and, therefore,

TX- )(t a ) 0

(D) The Curve s(t) - A Formal Presentation

We now show that s(t) is a well defined continuous function satisfying

s(T) - x0 + I for some time T. We also verify (3.7). The proof involves

-. comparing v(x,t) to solutions of scalar equations. In order to motivate the

comparison functions we first present a formal proof that s(T) - x 0 + I for some

time T. In this formal proof we assume that s(t) is a well defined, continuous

function, and the comparison theorems given in Section 2 are valid when the

operator L is replaced by the operator L1  defined by

LIU ut - Uxx - f(u)

Note that since f is discontinuous the comparison theorems are not really valid.

By making these assumptions, however, we are able to present the main ideas of the

proof while avoiding the difficulties due to the discontinuity of f. After the

formal proof we present a rigorous, analytic proof in (E).

From Theorem 2.4 we conclude that there exist constants C, and T2 which

depend only on the parameter a and have the following properties.

Suppose that AI > C1 , and u(x,t) is the solution of the equation:

(3.24) ut Uxx + f(u) -2m in (x2 ,W) x R
+

ux(x 2,t) = 0 in *+ .

Recall that X2 was defined in (3.13) as x2 - X - (XI + X2 ) . For initial

conditions we take u(x,0) - *(x) where, for now, f(x) is any function, defined

for x ) x2, which satisfies

-29-
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(i) *(x) e (-a,1 - 2m) for x ? x2

(ii) W(x) > a for x e (x2 ,x0 - 1)

(3.25) (i1) *(xo - 1) - a ,

(iv) *(x) e c 2((x 2 ,))

(v) *(x) < 0 for x > x2

Then, the curve O(t) given by O(t) - sup{x:u(x,t) - a) is a well defined

function. Furthermore,

o(t) e C1(R+), O(t) > x, + I in t+

(3.26)
lim a(t) - +-, and U(T2 ) > X0 + 1

We show, using a comparison argument, that v(xt) ) u(xt) in the set

G- ((xt):x > x2 , t e (0,T2 )1. This will imply that s(t) > O(t) in (0,T2 ), and

therefore, s(T2 ) ) x0 + 1. we then let T - inf{t:s(T) - a).

In order to apply the comparison theorems to conclude that v > u in G we

must show that:

(a) v(x,O) ) u(x,O) for x > x2

(3.27) (b) Liv LLu in G

(c) v(x2,t) > u(x2,t) for t e (OT 2 )

Note that since v(xO) - s(x) satisfies (3.3a), one can certainly find a

function (x) which satisfies (3.25) and (3.27a).

Since Llv - -w and Liu- -2m, proving (3.27b) is equivalent to showing

that w(x,t) < 2m in G. This was proven in (3.23).

It remains to verify (3.27c). We show that u(x2 ,t) 4 I - 2m < v(x21 t) for

t @ (0,T2 ). The first inequality follows from a simple application of Theorem 2.3

which shows that u(x,t) 4 1 - 2am in G. This is because u(xO) < 1 - 2m for

x > x2, Ux(x 2 *t) - 0. and Liu - -2m - L1 (t - 2m) in G.

To complete our formal proof that s(T) = x0 + I for some T it remains to show

that v(x 2 ,t) > I - 2m for t e (0,T2 ). This is done by showing, via a comparison
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argument, that v(x,t) > h(x) in 3
+ 

x (0,T2 ) for some oontinuous function h(x)

satisfying h(x 2 ) > I - 2m. The comparison function h(x) is defined as follows.

Let g(x) be the solution of the equations:

gq -g m in 3

g(O) -a, 9'(0) - 2"

Note that
a +m -/ 2

(3.28) g(x) = [ -2 IeX - e x ] + (a + mie - m
2

One easily verifies that g'(x) < 0 in e
+ 

and lira g(x) = -. Define C2 by
X#=

g(C 2 ) = -a. Note that C2  depends only on the parameter a. Assume that

(3.29) A > C2

Define h(x) by

Gx0(x) for 0 4 x < x2

(3.30) h(x) g2 (x2 - x) for x2 4 x 4 x2 + 3

g(x - (x2 + A3 )) for x2 + A3 < X

The important properties of h(x) are:

(a) h(x) 4 G in

(b) h(x 2 ) = Gx0(x 2 ) > 1 -2m

(3.31) (c) Llh < Llv in G wherever Llh is defined

(d) h(x) is a smooth function except at x = x3 and

x = x2 + X3 where h'(x) < h'(x)

(3.31a) is true because

G xo(x) for 0 C x < x2

92 (x2 - x) < d Gx0 (x) for x2 C x < x2 + X3 A

g(x - (x2 + X3 )) < a 4 Gx0(x) for x2 + A3 4 x < x 0 ,

9(x - (x2 + A3 )) < -a < G x(X) for x0 4 X

(3.31b) is true because of (3.16b). (3.31c) is true because

lh = 2 (x - x3 ) - m for x e (ox 3 )

IM .mfor x > x 3  P

while Llv = -w, where w(x,t) satisfies (3.23). Finally, (3.31d) is true
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because h'x) - 9 <(x3 x3) < (Gee (3.22a) while h'(x4) - •. (see

(.16C)). On the other hand, h'((x 2 + A3 ) ) - -g2(-X 3 ) < - 2, hile

+ A)2 1 < .

h' ~ g'(0) - - '

We now prove that v(x,t) > h(x) in aX (OT 2 ). If this were not the case

then, since h(x) < v(xO) in e and Jr h(x) - -, there must exist some
X4

point (,f) such that h(R) - v(1,E) and h(x) < v(x,t) for t < V. From (3.31d)

it follows that i * x3 and i $ x2 + A3 . Now suppose that R $0 and h()

- v(M) < a (> a). Then there must exist a positive constant 5 such that h < a

and v C a (> a) in the rectangle R (i -( ,x + 5) x (t - St). However, h < v

on the bottom, left, and right hand sides of R. Since in R, h(x) and v(xt)

are solutions of linear differential equations, we conclude from (3.31c) and

Theorem 2.1 that this is impossible. A similar argument shows that it is impossible

for R - 0.

(3) The Curve 9(t) - -A Rigorous Presentation

We now give a rigorous proof that a(t) is a well defined continuous function

such that a(T) - X0 + 1 for some time T. We also show that (3.7) holds. The

proof is broken up into a few lemmas. In what follows we shall use the constant

T2 which was defined in (D).

Lemma 3.3: Let D - (x2 ,m) x (0,T2 ), it - Ix > x2:v(x,t) - a) and

1 - {(x,t) e Dix e I t . Then It is nonempty for each t and, therefore, a(t) is

, a well defined function.

Proof: Recall the function h(x) defined in (0). A rigorous proof was given in (D)

that v(x,t) > h(x) in D. From this it follows that v(x2,t) > h(x2 ) - d.

Furthermore, since h(x2 + )3) - a it follows that s(t) • x2 + A3 whenever a(t)

is defined.

We now wish to find an upper bound in v(x,t) and a(t). This is done using a

comparison argument. Recall that w(x,t) < m in V. This was proven in (3.23). It
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is therefore natural to choose a comparison function, z(x,t), which is a solution

of the differential equation

zt . zxx + f(z) + m in ,
(3.32)

z x(X 2,t) - 0 for t > 0

We must choose z(x,O) so that z(x,0) > v(x,0) for x ) x2 . Since Iv(x,0)l < V

- (Xo-X)

for xe (x2 1x0 ] and Iv(x,0)l < IG x0(x)I - ae for x > x0 , we let

z(x.0) = (x) where E(x) in a smooth function which satisfies

(a) C(x) e (V,2V) for x2 C x 4 x0 ,

(b) E'(x) < 0 for x - x2 ,

(3.33) (
(c) t(x) = ae 2 0 for x > x0 + ,

22
(d) E(x) e C 2(x2 'm)

From Theorem 2.4 it follows that there exists a constant Co  such that if

x0 - x2 > CO, then the curve O(t), given by z(l(t)it) - a, 0(0) = x + is a

well defined, smooth function which satisfies lim o(t) - . In order to guarantee

that x0 - x2 > CO we assume that > C0 . Note that the constant C0  depends

only on the parameters a and Y. Ut now show that v(x,t) < z(x,t) in D. This

will complete the proof of the lemma. It will also follow that s(t) 0 1(t) in (0,T2 ).

Suppose it were not true that v < z in V. Let tI - inf(t:v(x,t) ) z(x,t)

for some x ) x2 ). Pirst suppose that there exists y > x2  such that

v(y,t1 ) - z(y,t1 ) and v(x,t) < z(x,t) in [x2 ,) x (0,tl). Since

v(x,O) < z(x,0) it follows that tI > 0. If v(y,tl) < a there must be a

rectangle R = (y - B,y + 0) x (t - 8,t ) such that v < a and z < a in R.

Since v < z on the left, right, and bottom sides of R, and Lv = -w < M = Lz

in R we obtain, from Theorem 2.1, the desired contradiction. A similar argument

shows that it is impossible for v(y,t1 ) > a.

Now suppose that v(y,t i) = z(y,t1 ) = a; that is, y - a(t Since v(x,t) <

z(x,t) for t < tl, it follows that s(t) < O(t) for t < t I . Therefore, v < a
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for x ) a(t), t e (o,tl). In this region, v and z are both solutions of linear

differential equations with Lv < Lz. It now follows from Theorem 2.3 that vx(yt 1 )

< zCx(yt 1 ). Since v and z are both continuously differentiable functions this

implies that v(xt 1 ) > z(x,t1 ) for some x < x1 . This is a oontradiction.

Finally suppose there exists a sequence of points (Yk,tk) such that

v(Yk,tk) ) Z(Yk.t k ) for each k, tk ' tl, and Yk + 
- as k + 0. Since

v(o(t),t) < z(O(t),t) - a for t e (O,t1) there must exist a positive constant

4 such that v(0(t),t) < z(C(t),t) - a for t e (0,t, + B). we also have that

v(x,O) > z(x,O) for x > 0(0), and Lv < Lz for x > a(t), t e (o,tI + B). From

Theorem 2.1 it now follows that v < z for x > (t), t e (,t I + B). This

contradiction completes the proof of the Lemma.

Lemma 3.4: There exists a constant T1 , which depends only on the parameters a

and Y, such that s(t) < x0 + I for t e (0,T,).

Proof: Recall the functions z(xt) and a(t) defined in the previous lemma. It

was shown that v(x,t) < z(x,t) in D and s(t) < 0(t) in (0,T2 ). We show that

there exists a constant T, such that o(t) < x0 + I for t e (0,T1 ). Note that

z(x,t) and (t) depend on x0  as well as the parameters a and Y. We must

choose T, so that it depends only on the parameters a and y. To do this we

construct the following comparison function.

Let z1 (x,t) be the solution of the differential equation

(3.34) Zlt , Zixx + f(zl) + m in R x R
+

Z1 (x,0) W lX in R

where 1(x) satisfies:

(a) (x) e c2(R)

(b) (l1 x) > 2V for x e
(3.35)2

(c) YCx) < 0 for x e R

24
(d) C x) =ae-  for 3 < x <

-34-

. . . A ,g i



T-_

Define a (t) by z1 (0 (t),t) = a, (1(0) x 0 . We would like to apply Theorem

2.4 to conclude that a (t) is a well defined, smooth function such that

lim 1t)= t However, z1 (x,0) * z1 (-x,0), and, therefore, the assumption (1.2c)
t+

is not satisfied. Instead, we are assuming that zix(xO) < 0 in 1L. One finds,

however, that proof of Theorem 2.4 is easier with this assumption. The reason being

that if zlx(x,O) < 0 then there is a unique curve, 01(t), such that

z (0 (t),t) = a, while if (1.2c) holds then there are two curves, I(t) and

- t), such that z ( I(t),t) - a. We assume, therefore, that 01 (t) is well

defined, and lima 1 (t) = . Let TI - inf(t: 1 (t) - 1}. Note that TI  depends: t+W

only on the parameters a and Y.

We now prove that 0(t) < a (t) + X0  for t e (0,T, ) . This is dbne by showing

that z(x,t) < zl(x - x.,t) in D. Set z2(xt) - z1 (x - xo,t). As usual we wish

to use a comparison argument. Note, however, that ztx,t) is defined only for

' 1 x2 , while z2 (x,t) is defined in t x it+. We, therefore, set

z z(2X 2 - x~t) for x < x2z3(x,t) -{::;xt
z(x,t) for x > x2

and show that z3 < z2  in t x (0,T,). Note that since Zx(x2,t) - 0, it follows

that z3 (x,t) is a smooth function.

J.. Recall that L1  is the operator defined by L1v 2 vt - Vxx - f(v). Note that

L1v2 = m - L1v3 . From the definitions it follows that z3 (x,O) < z2 (x,0). We now

apply Theorem 4.2 of [22] to conclude that z3 (x,t) < z2(xt) in R x (0,T,).

Therefore, z(x,t) < z1(x - x0,t) in (x 2,a) X (0,T,), from which it follows that

O(t) < 01(t) + x0 < x0 + 1 for t e (0,T,). Since s(t) < 0(t) the proof of the

lemma is now complete.

Lemma 3.5: 1 - {(x,t) e Vix - s(t)}.

Note that this lemma implies that s(t) is a continuous function in [0,T 2].

Proof: Suppose the lemma is not true and let tI - inf(t:I * {s(t)}J. From the

results of [231 it follows that t1 > 0. Note that s(t) must be continuous on
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(D,t1 ), and, because of assumption (3.2), X EIJim S(t) exists. We first Show
t+t

that i { }. The proof is by contradiction.

Suppose that v(y,t1 ) - a for some y e (x21A). Because of assumption (3.2),

v > a in some rectangle R (y - O,y + 0)x (t -Bt ).Since w <m in R (see

(3.23)) it follows that Lv = 1 - m > a - La in R. Theorem 2.1 now yields the

desired contradiction. A similar argument shows that it is impossible for

v(y,t1 ) -a for soey> X. Hence, I (}

Now suppose there exist a sequence of points ((y ktk)} and {(zktk)l, k ) 2,

such that:

(a) Yk < zk for k = 2,3,...

(b) Yk + L zk + A, and t k  t, as k +,

(c) v(yketk) = V(Zkltk) - a for k = 2,3,...

Since v x(X,t) is assumed to be a continuous function it follows that v x(At I = 0.

we show that this is impossible.

From assumption (3.2) it follows that there exist positive constants M and

such that for tI - 6 < t < t,, either

(a) s(t) < -(t -t 1 ) +

or (b) s(t) > M(t - t1) + A

First suppose that (3.2b) holds. Then there exists a constant 1 > 0 such that

v > a in the trapezoid T = ((x,t):x - 1 x M 1lt - t ) + , t1 < t < t

In T, v(x,t) is the solution of the linear equation Lv - w. Recall from

(3.23) that w < m in D. Therefore, in T, Lv - I - w > I - m > a ) L(a). Since

v > a on the left, right, and bottom sides of T, it follows from Theorem 2.2 that

v x(At I)< 0. This contradicts our previous conclusion that vx(At1 0. A

similar argument shows that (3.2a) leads to a contradiction.

The following lemma completes the proof of Theorem 3.1.

Lemma 3.6. s(T) - x0 + 1 for some T e (T1 ,T2 ). Furthermore, s(t) > x, + I in

(0,T).
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Proof: Let O(x) be some function which satisfies (3.25), and let u(x,t) be as in

(D). That is u satisfies the equation (3.24) in D with initial conditions

u(x,O) - *(x). In (D) we gave a formal proof that u < v in (D). An argument very

similar to that given in Lemma 3.4 that v < x, in V gives a rigorous proof that

u < v in D. See [24, Lemma 4.5] for details. Hence s(t) > O(t) in (0,T2 )

where 0(t) - sup{x:u(x,t) - a). Recall, from (3.26), that a(T2) > x0 + I and

a(t) > x, + I in (0,T2 )o We define T by T - inf(t:s(t) - + 1).

(F) Proof of Theorem 3.2

We now prove Theorem 3.2. This will omplete the proof of Theorem 1.1. Here we

assu that the initial datum, OW, satisfies (1.2), and w(x,O) 0. AS usual,

tepofconsists o applications of the oomparison theorems. we shall need both an

upper and a lower bound for v(xt). The comparison functions are now described.

Let z(x,t) be the solution of the differential equation:

zt = zxx + f(z) + m in R x R+

z(x,O) = (x) in R

where F(x) is a smooth function which satisfies:

(a) C(x) e c 2 (a)

(b) E(x) - V for -0 < x < 1/2

(c) V(x) < 0 for 1/2 < x <

2 3
(d) t(x) a e for < x <

Note that a similar a function was used in step (E). Our remarks there demonstrate

that the curve O(t), given by z(G(t),t) - a, is a well defined, smooth function

such that lim O(t) - 0. The function z(x,t) will be used as an upper bound for
t.-

v(x,t).

For a lower bound we consider the function u(x,t) defined to be the solution

of the differential equation:
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(3.36) ut - Uxx + f(u) - m in x K +

ux(0,t) - 0 in R
+ 

I

with initial datum, u(x,O) - f(x), to be determined. From Theorem 2.4 there exist

constants 1B, and T3 such that if *(x) satisfies (1.2) with x0 > 81 then

the curve 01 (t), given by u( 1(t),t) - a, is a well defined, smooth function such

that lira 1 (t) W , 01 (t) > x - B in e, and u(x,t) > d for x < x0 -

t > T3. Recall that d - q2 (0) was defined in (3.17).

we let B1 - sup a(t) and C3 = B + B . From Theorem 2.4 there exists a1 t<T

constant T4  such that3 al(t) > x0 + B1 for t > T 4 . We assume that

(3.37) > C3

We first show that v(x,t) < z1 (x,t) Z z(x - x0 ,t) in 3
+ 

x (0,T4 ). This is

done using a comparison argument. Note that v is defined in R+ x R+ while Zi

is defined in R x + Therefore, we let

J v(-x,t) for x < 0
vI(xt)

v(x,t) for x > 0

and

w(-x,t) for x < 0
WT(xtt

w(x,t) for x ) 0

and show that v, < z, in R x (0,T4 ). We first prove that if £ is chosen

sufficiently small, then L1 v1 < L1zi in R x (0,T4 ). Recall that

LIU ut - Uxx - f(u). Note that Liz, m. From (3.6) it follows that in

R x (0,T4 ), wI C CVT 4 . Therefore, if

m
VT

4

it follows that LIv I < Llz i in R X (0,T4 ). It is also clear that

v1 (x,0) < Zl(x,0). An argument similar to that given in Lemma 3.4 shows that

vI < zI in R x (0,T4 ). (See (24] for details.) Hence, v < z, in 3t x [0,T4).
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Let 2(t) be defined by z(a 2(t),t) - a. That is 0 2(t) -1(t) + x. . Not* that

s(t) < a t).
2

Set It  {x:v(x,t) - a). An argument similar to that given in Leamma 3.5 shows

that It = {s(t)}, and s(t) is a continuous function as long as s(t) > 0. To

show that s(t) > 0 in (0,T4 ) we consider the function u(x,t) defined to be the

solution of (3.36). For initial datum we assume that u(x,0) * *(x), where *(x)

satisfies (1.2) with x0 > el. Furthermore, we assume that

(a) 0 4 *(x) o (x) in

(b) (x) > a, 0 < x < 0 -1,

(c) flx - 1) a

We assume that e > 8 + 1. Therefore, if x 0 > 0, it follows that the curve

01(t), defined by U(0lCt),t) - a, is a well defined, smooth function such that

lim al(t) - =, a1 (t) > x0 - B in e+ , u(x,t) > d for x < - B, t > T3, and
t+m

CI(T 4 ) •x 0 + B1  A proof similar to that given in Lemma 3.6 of (Z) shows that

144s(t) >0 1(t) in (0,T4 ) . Therefore,

(a) s(t) > - B in (OT 4 )

(3.38) (b) s(T4 ) > X0 + B1

(c) v(x,t) > d for x e (O,x0 - B), t > T3

Let To  infft:s(t) = x0 + B 1.

Recall that s(t) < 02 (t) - O(t) + x0, and 01 . sup O(t). Therefore

s(t) < x0 + aI for t e (0,T 3 ). Since s(T 0 ) - x0 + 1  it follows that T3 < To .

The proof of Theorem 3.2 is now split into a number of Lemmas.

Lemma 3.7: Iv(x,T0 )j < Gs(T0)(x)1 for x > s(T 0 ).

Proof: Let G - {(x,t):x > s(t), t e (0,T0 ). We first show that v > -a in G.

Note that v(s(t),t) = a, and v(x,O) > -a for x > x0 . It was shown earlier

that w < m in G. Therefore, Lv = -w > -m > -a = L(-a) in G. From Theorem 2.1

it now follows that V > -a in G0. From the definition of s(t) we conclude that

v < a in G, and, therefore, Ivl < a in G.
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we now apply Proposition 2.5 with v 0(x,t) -as2 sT)X

2 (a( (TT --2 lT0-x

v1(x,t) - -as , and a0(x) - a(x) E 0 to conclude that

Iv(x,t) < ae for x ), s(T), t e (0,T,) . Therefore,

- (s(T )-x)

Lma3.81 if C is sufficiently wall, then lw(x,T)l < HsT )(x) for

x > 1T0 ) .

Proof: Assume that
m

2T 
4

Since w(x,0) - 0, it follows from (3.6) that, for x > sITO),

TO
Iw(x,T )I C f Iv(x,n)ldn

- (s (T 0 )-x)
(T 4 ae

as 2 (T 0 )-x)

2

H C( x).

Lemma 3.9: If C is sufficiently small then Iw(x,T0 )l < HaiT0)(x) for

x [0,s(T 0 ))•

Proof Assume that

2VT 
4

since w(x,O) - 0, it follows from (3.6) that, for x e O,s(To)),
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Iw(x,To)l e f tv(x, n)Ildn < cVW < 4 H ( )

0 4 2 s(To)

Lemma 3.10: Let P - ((x,t):0 4 x < s(t),0 < t < T 0. Then v(x,t) > a in P.

Proof: Suppose that this is not true. From the results of (231 there must exist a

point (y,tI ) e P such that v(y,t,) - a and v(x,t) < a in

P f f(x,t) e P:o ( t ( to We use a comparison argument to show that this is

impossible.

Note that Lv = 1 - w > 1 - m > a = La in PV. Furthermore, v(x,O) > a in

(O,xo), v(s(t).t) = a in (O,tl), and vx(O,t) - 0 in (O,ti). From Theorem 2.1

it follows that v(y,t1 ) > a which is a contradiction.

The following result completes the proof of Theorem 3.2.

Lemma 3.11: G a(TO)(X) < V(X,T0 ) in [0,s(T 0 )).

Proof: Since G s(T X) = a for x a ST.) - )1,s(T0 )), the previous leaa

implies that Gs(T0)(x) < v(x,T0 ) for xe (sCT0) - A 1 s(T0 )). Recall, from

(3.38c), that v(x,T0 ) > d for x 6 f0,x0 - 01. Since Gs(T0)(x) C d for all x

the proof will be complete if we can show that s(T0 ) - < x0 - B. However, since

> C3  (see (3.37)) it follows that

a(T0 ) - a + 1 < X0 + B C3  x-B
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APPENDIX
Here we present a precise description of the comparison functions Gxo (x) and

H= x) and the various constants mentioned in the statement of Theorems 1.1, 3.1,

and 3.2. These functions and onstants are defined in their oorrect, logical order

without any attempt at motivation. We shall see that these constants and functions

depend only on the parameters a and Y.

Set m min(-! -& '2(a m))]. Define g2 (x) to be the
4 2 3 n 92(x)

solution of the differential equation

g; - g2 " m - 1 in (-3,0)
3

g2 (-13) = a, gi(O) = 0

ote that g2 CxI - [ +  '](e'  + e+ x , 
+1 - a. Let d -2(0)'

3 + 3

Recall from the introduction that there exist onstants V and W such that

Iv(x,t)l < V and Iw(x,t)l < W in R x R. Let x) be a smooth function which

satisfies (3.35). Let zl(xt) be the solution of the differential equation:

Zit -Zx x + f(z 1 ) + M in R x

Z1(xO) W C1(x) in R

Define 01 (t) by zl(0l(t),t) - a, a1(0) = x.. A slight modification of the proof

of Theorem 2.4 shows that a t) is a smooth function such that lii l(t) = 
1 1~t+Q*

Note that we cannot apply Theorem 2.4 directly because W (X) * C (-x) in R The

proof of Theorem 2.4 is easier, however, with the assumption (3.35c) Let

T1 inf~t: I(t) = 1.

From Theorem 2.4 we conclude that there exists a onstant Co with the

following property. Suppose that y > CO and z(xt) satisfies the equations:

zt 
=  + f(z) + m in R

+ x R
+

Zx(Ot) - 0 in

z(x,0) - &(x) in R

Here 9(x) is any smooth function which satisfies
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(a) (x) e (V,2V) for 0 < x < y

(b) 4( e c2 (e ) 
,

(C) 4S(X) < 0 in +

j (y+ 1/2 -x)/2

(d) C(x) = ae for x y +1/2

Then the function o(t), given by z(O(t),t) - a is a well defined, smooth function

which satisfies lir 0(t) -

2 [ ](d - a), and ) X + ). Let
2 e 1 - (d+ m) 1 2 2 3

) for 0 < x 4 3

d3 3 2
2

Define, for y > 0 and x e [O,y], g3 lx,y) to be the solution of the

differential equation

g 3  - (x -y) + m (g; " '. ,

g;(Oy) - 0, q3(y,y) - a

a +m -ey
2 M -X m

Then, g3 (xy) " [ e hex + e-x] + + (x - y)- m.
e' y 2 2-

Let g(x) be the solution of the differential equation:

q" - q m in 
+

9(O) - a, g'(0) " - "

22
Th en + u) 1 2 l i-2 ] e ' - e. -I + a + i ,e 

x  
m . Note that gJ (x) < 0 in t

and lim g(x) - -. Define C2  by g(C 2 ) - -a.
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Since a + 2m < we onclude from Theorem 2.4 that there exist onstants

C1  and T2 with the following properties. Suppose tht y > C1  and let (x) be

any smooth function which satisfies:

(a) *(x) e c2 ( )

(b) *(x) e (-a,1 - 2s) in k+
,

(c) V(x) > a for x e (O,y)

(d) #'(x) < 0 in e,

(e) C(y) - a

Let u(x,t) be the solution of the differential equation

t uxx + f(u) - 2m in + x +

Ux(Ot) -0 in e ,

u(x,0) = (x) in e .

Then the function a2 (t), given by u(O2 (t),t) = a, 02(0) = y, is a well defined,

smooth function which satisfies:

(a) lia a2 (t) -m

(b) 02(t) > A2 + 1 in

(c) a 2 (T 2 ) > y + 2

From Theorem 2.4 it follows that there exist constants e1, g, and T3 with

the following properties. Let u1 (x,t) be the solution of the equations

uit -
0 lxx + f(u1 ) - m in xit

+ 
,

uIx(0,t) = 0 in *+

with initial datum u,(x,0) - n(x) which satisfies (1.2) with x0 > 01• Then the

curve 0 3(t), given by uI(a 3 (t),t) - a, is a well defined smooth function which

-II
satisfies:

(a) 1la 03 (t) -

(b) a 3 (t) > x0 - B in R
+

(c) u1 (x,t) > d for x < x0 - 0, t > T3
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Let 0- sup (t) and C3 - B + B . Prom Theorem 2.6 there exists a constant

Ot(T 3

T4 such that 0 3 (t) > x0 + 8I for t > T4 .

Let A axC,CI,C2C3}.

4  .A4  4

Choose A4 > 0 so that e 4-e - 1, and lot = e1 + I Xk"
4 k-1

J Let 6-min{S,6 ,64} where
120 3' 4

+

6 1 2 I(A +A + 3r2
6 2V 2j

m

63 "V 2-4
6 -62

1 __ _ ___( a
6min m(0 x) +-

4 V2 O(x'Ci 2(X 1 f A2 + A3  2 2

Finally, let

A, ' - 2(x 0 -x)-- ae x0 < X

," a X1 - X )I x x x0

% <. x x

Gxo() = g
(x 

" x2) x2 x - 2 <xx 1

$ 2 (-x 3  x2  < A ( x92
( x " x2 ) 3 2 - 3 2

g3 (x,x3 ) 0 4 x ( x3

- (x0 -x) x(o(x
M 2o 0 x

HxolX)-

1 + , • (x 0 - x) + 0 4 x 4 x2 + 22 + 3
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